Thursday, September 19, 2024

New Binocular Space Walk audio guide - Clusters in Cassiopeia and Perseus

I've added a new Binocular Space Walk audio guide, "Cruising for Clusters in Cassiopeia and Perseus." The guided tour takes you through the northern constellations Cassiopeia and Perseus to find 16 of the brightest open clusters in that part of the sky, as viewed from mid-latitudes in the northern hemisphere. It lasts about half an hour, but provides many opportunities to pause the recording to admire the objects and take breaks. Here's the link to the page, which is also available under Quick Hops on the right. Enjoy!

Binocular Space Walk - Cruising for Clusters in Cassiopeia and Perseus

Wednesday, September 18, 2024

Eyepiece cheat codes: Observing Jupiter and Saturn

Eyepiece cheat codes logo
Jupiter and Saturn, and sometimes Mars, are the planets that will yield the most detail to backyard astronomers. Not only are they bright, but they are large enough for even the smallest telescopes to see them as balls with shading and details. And of course, there are Saturn's rings! Mars generally needs to be at a favorable opposition to see surface details well. 

Jupiter has its four Galilean moons and Saturn has between two and seven moons accessible to typical backyard telescopes. The moons of Mars are generally too close to the planet to spot except when Mars is close to opposition and you have a steady atmosphere with good equipment. 

A night with a steady atmosphere—good "seeing"—will allow you to have much better views than a night where the seeing is soft, turbulent, or mushy. This is probably the single most important factor in how sharp the view will be. Try to observe when the planet is highest above the horizon. Viewing through a lot of "soup" at low altitude will also make for disappointing views, even on a night of good seeing. Heat rising from rooftops, asphalt, and concrete also wreaks havoc with seeing.

If you are observing with a Newtonian reflector, the image will be rotated 180 degrees (generally south is up). In a refractor or Cassegrain with a mirror diagonal the view will be mirror reversed (north up, but mirror reversed). See this explanation of directions in the telescope.

Jupiter

Io and its shadow transits Jupiter
A complete novice can expect to see two main cloud bands on Jupiter and its four Galilean moons. With more practice, not only the South and North Equatorial Belts (SEB and NEB), but temperate belts in each hemisphere may also sometimes come into view, as well as darkened polar areas. 

In addition, features such as festoons, barges, and other spots that represent the turbulent swirls and storms in Jupiter's upper atmosphere become visible with practice and good seeing. 

The Great Red Spot is also sometimes visible when it is rotated towards us, although in recent years it has become rather wimpy in its size and color compared to previous decades. Look at some Jupiter images to see the types of features to look for.

Above: The moon Io and its shadow visible against the cloud tops of Jupiter. Image by Steve Hill, CC by 2.0, via Flickr

Below: The four Galilean moons are aligned on one side of Jupiter in this image by Ivana Peranic, CC by 2.0, via Jeremy Keith/Flickr.

Jupiter and its four Galilean moons
Jupiter's Galilean moons—those that Galileo was able to see in his tiny refractor: Ganymede, Callisto, Io, and Europa—are the only moons, out of the currently identified 95 Jovian moons, that are visible to amateur observers, and can even be spotted in binoculars. Because their orbits are well known, predictions as to transits across the face of the planet and the corresponding shadows, disappearances and reappearances behind the planet or its shadow, and even occasional occultations and eclipses of one moon by another are available. You can plan an observing session to add these to the interesting details you can see in your telescope. 

The easiest are the shadow transits, which show up as dark black dots on the face of Jupiter. The moons themselves are more difficult to see when they pass in front of the planet, and much depends on the level of contrast with the cloud deck below them. I have seen them many times in my 4.5-inch reflector, but have been unable to see them just as many times. 

Averted vision is unnecessary for Jupiter and its moons. In fact, you'll see the most by looking directly at any feature. Bore your vision into the feature, almost as if you are looking through it, to get the most detail to register. Relax your eye and just let the detail burn into your retina. Really stare into it!

Sketching the cloud belts and swirls that you see can really help you focus on the details. You don't always have to sketch what you see, but try it a few times and you'll be surprised at the amount of detail that is actually visible. You may not see it all at the same time, the same with deep sky observing, but you will build up a complete picture with fragmented glimpses. This teaches you to place a detail within the greater context and you'll also see how the features slowly traverse the globe of the planet in an (astronomical) westward direction as Jupiter completes a full rotation in less than 10 hours—the fastest rotating planet in the solar system. For more on observing Jupiter, I recommend How to Observe Jupiter Through a Telescope by BBC Sky At Night Magazine.


Saturn

Saturn
Of all the sights a beginner can see in the telescope, Saturn is probably the most striking. When I show it to people at public outreach events, most people are thrilled and some even question whether what they are seeing is real.

While Saturn doesn't show nearly the same amount of detail as Jupiter, and it's remarkably smaller in the eyepiece, the sheer beauty and uniqueness of the planet will keep you coming back whenever you can. Something about the rings is precious. Really.

Above: Saturn by John Spade, CC by 2.0, via Flickr


Montage showing the ring tilt of Saturn sequentially
The rings change their tilt over the years, and with Saturn now in the evening sky, the rings are nearly edge-on. This makes it difficult to see the major feature in the rings, the Cassini Division. This thin dark lane is sometimes visible on nights of excellent seeing with the rings tilted towards or away from us at a significant angle. Look for it at the outward ends of the rings, where they become more visible because they begin to curve the other direction and the gap is seen at its fullest width. This gap that appears so tiny to us is actually almost 3,000 miles wide! The next ring plane crossing is in March 2025, when the rings, being an average of only about 30 feet thick, become invisible in our telescopes. The Cassini Division may have to wait.

Above: Saturn's varying ring tilt, image by NASA and the Hubble Heritage Team (STScI/AURA), CC by 2.0, via Flickr. Cassini Division label added.

If you look carefully you will usually see a slightly darker band around Saturn and perhaps some subtle shading elsewhere, especially at the poles. Saturn is much smoother than Jupiter, but it does have very infrequent storms visible in our telescopes, such as the great white spot of 2011.

For Saturn's moons, you'll have to use averted vision for all except the largest, Titan, and Iapetus when it is furthest out on the western side of Saturn and its bright icy side is turned toward Earth. Iapetus strays pretty far from Saturn in its wide orbit and can easily be confused with background stars. The inner moons are dimmer, but with good seeing, patience, and a telescope of around 4 inches or more, you should be able to pick out Rhea, Tethys, Dione, and possibly Enceladus. Mimas is quite difficult, Hyperion requires a larger telescope of 10 inches or so, and you won't have a chance at any of the other moons of Saturn, which currently number 146 and counting.

Jupiter and Saturn observing resources:

Cloudy Nights Planet Gallery (more recent images at top)

Cloudy Nights Major and Minor Planetary Imaging thread (latest images)

Online interactive observing tool for Jupiter's Moons (Sky & Telescope)

Great Red Spot transit times (Sky & Telescope) (when it crosses the planet's central meridian)

Online interactive observing tool for Saturn's Moons (Sky & Telescope)

Apps:

Moons of Jupiter and Saturn (Android)

JupitersMoons (iOS)

SaturnsMoons (iOS)

Sunday, September 1, 2024

Mounting a RACI finderscope on a collapsible tabletop telescope


I recently bought a Sky-Watcher Virtuoso GTi 150P tabletop 150mm (6-inch) telescope. This is a slightly larger variation, with a go-to mount, of a popular design sold by Astronomers Without Borders as the OneSky, a 130mm (5-inch) altitude-azimuth mounted collapsible tabletop telescope, shown at left.

These telescopes have a Vixen-style dovetail bar attached to the solid part of the tube—the green thing in the pictures of my telescope below. This is how the tube attaches to the mount, which has a Dobsonian style groundboard for the azimuth (side to side) axis and a half-fork with dovetail saddle for the altitude (up and down) axis. The tube can be removed from the saddle and clamped back on with a single threaded knob, the knob sticking up from the blue tube in the picture of the OneSky, making this portable design even more portable.


The problem

For finding objects, or in the case of the go-to model, aligning the mount or finding objects when the go-to isn't cutting it, the scopes are equipped with a straight-through red dot finder that projects a red dot on a window in front of the stars. A clever design with many variations, but like some people, I have trouble—no, make that pain—bending my neck enough to comfortably look through one, especially at objects high in the sky. 

On my other two scopes I have added azimuth circles and a digital angle gauge to find objects by looking up their alt-az coordinates in an app like Sky Safari Pro, moving the scope so that the coordinates are set on the azimuth circle and the gauge, and then using a right angle correct image (RACI) finderscope to zero in on the target. A RACI finder doesn’t require neck contortions and shows a correctly oriented view like you would see in binoculars.

I wanted to add a RACI finder to the Sky-Watcher tabletop telescope, but the problem is that the front ring that holds the secondary mirror and focuser is extended out on two truss tubes so that the whole front half can collapse into the solid rear half that holds the primary mirror, making it quite compact. There is no good place to add a finder on the front ring and it would make the scope quite front-heavy, requiring some sort of counterweight for manual operation. Others have added reinforcement to the front plastic ring or have drilled holes in the tube to add a finderscope, but I didn’t want to do either of these things. 


The solution

Finished finderscope mount on the telescope.
I added a universal dovetail shoe (base) to a block of wood attached to the scope's dovetail bar (the green thing) and swap my RACI finder between my 4.5-inch and this telescope. Looking at the design, the long dovetail bar attached to the telescope tube has two channels that run its length and a single 1/4-20 threaded hole close to the front end of the bar. The hole is presumably for mounting on a tripod, but it’s at a very poor location for balance. I had seen others mount a laser pointer and finder on that part of the dovetail bar, so I experimented with mounting a Svbony SV182 6x30 RACI finder that I have on my 4.5-inch reflector. I zip tied it in place to see how it worked. The problem was that, sticking out straight from the dovetail bar, the finder was too far from the observer’s position and I had to get up and either lean over or walk around the back of the scope to the other side to use it.

If I were to fasten a block of wood to the end of the dovetail bar at a 90 degree angle, then I could mount the RACI finder on the end of it, bringing the eyepiece to a much better position, even better than if I had drilled a couple of holes in the solid tube to mount it. After doing just that, I noted a post on the OneSky megathread on Cloudy Nights that did something similar, but by drilling and tapping a dovetail clamp instead of using a block of wood. Same end result.


Here’s how to do it

I cut all the pieces using a basic mitre box and a hand saw.

Finished finderscope mount off the telescope with finder mounted.
I cut a 5” piece of 2x2 baluster (vertical railing piece) that I had left over from making the legs for the telescope’s table mount. I cut a 45 degree corner on one end so I wouldn’t have a sharp corner sticking out. These balusters tend to vary slightly in cross section width, so I checked a few pieces before I found one where the dovetail finder shoe, or base, fits tightly in one direction—one more way to make it even more solid. Note: I used balusters rather than the 8’ lengths of 2x2 that they have because the balusters tend not to be as warped as the long pieces and they were actually cheaper per foot.

I glued and screwed two small pieces of wood to the block to sit in the bar channels and keep the block from rotating on the single bolt. I cut the two little pieces from a large size paint stirring stick (1/4” thick). The pieces are 7/16” wide and 2-1/4” long. I sanded them so they fit tightly into the bar channels.


This side will face the observer sitting at the telescope.

Close up of the end of the dovetail rail on the telescope.
I dry fit the block and the two channel pieces to make sure they fit tightly in the dovetail bar. There are two screws in the dovetail bar at the bottom of each channel 1/8” from the front end of the bar. The block would need to sit behind these screws with the channel pieces butting up against them to add stability. I marked where the bolt would go through the block into the dovetail bar and also where I would need to glue the small channel pieces that would fit snugly into the two channels in the bar. I had cut them a little long just to give a bit more twist resistance in the channel.

Unpainted finderscope mount with dovetail base attached- back view.
Where the bolt would go through the block and screw into the dovetail bar, I countersank a 3/4” diameter hole about 3/16” deep, enough so the bolt head, with a 5/8” outer diameter - 1/4” inner diameter washer, would be flush or nearly flush with the surface, using a 3/4” Forstner bit. (3/4” because my wrench socket would fit in it so I could tighten the bolt.) You must do this before drilling the hole for the bolt so that the bit can center properly. It’s not essential to countersink the bolt head, but I thought it would be better than having it sticking out, and I recently got the Forstner bit set, so I’m eager to find reasons to use it! I then drilled a 1/4” hole all the way through the block, centered in the 3/4” countersunk hole.

I inserted the two little channel pieces into the channels and pushed them tight up against the screws in the bar channels. I inserted the bolt and tightened it to make sure the fit was good. Then I removed the bolt, put wood glue on the two channel pieces where they would join the block and bolted the block into place. Once the glue had dried for about 45 minutes, I removed the assembly and cleaned off some glue that got on the dovetail bar. It removes easily.

Top view of mount showing dovetail base screwed into top.
The dovetail shoe for the finder has four slots for screws. I screwed it into the top of the block with four 1-1/4” #6 wood screws. Everything looked good, so I took the shoe off the block assembly, painted the block assembly black, reattached the shoe, and attached the whole assembly to the dovetail bar. The shoe stays on the bar and the finderscope is removed for transport. This modification is also entirely reversible with no alteration to the telescope.


The finished mount. Note the four screws added to the channel bars. I found glue alone did not hold. Make sure you recess the screw heads into the wood with a countersink bit so they don't scrape the dovetail bar.

View of telescope with finderscope in place.
The finder is at a more comfortable, although still not optimum, location. I can also fit my head in there to use the red dot if necessary. The scope can rotate through the entire range of altitude motion without anything bumping or binding, but be careful when pointing above 50 degrees, as the additional weight of the finder will want to flip the tube backwards.


Telescope collapsed with mount attached.
Packed up, the finder mount is out of the way and adds very little weight or volume to the overall package. Just loosen the two thumbscrews, slide the finderscope on, and tighten the thumbscrews. 








View from above of telescope collapsed with mount attached.
View from above when collapsed. The finderscope mount does not stick out beyond the round baseboard of the telescope mount. The dovetail shoe is mounted so that the thumbscrews point inward and are less likely to catch on a cover or other item.





Now I can use the RACI finder more easily and swap it between the two telescopes. It's still not an optimum viewing position especially at higher altitudes, although being able to rotate the diagonal on the finderscope helps. But for these collapsible telescopes, this makes a useful addition or alternative to the red dot finder.