Friday, December 13, 2024
Build an air travel table mount for a tabletop dobsonian
Thursday, November 7, 2024
Bino Body Mount - build a travel mount for binocular astronomy
I was pondering compact and, of course, inexpensive solutions, and came upon this post on Stargazers Lounge. The observer uses a mini-tripod with one leg removed, resting the other two legs on his shoulders. This seemed like a great idea, except you still have to keep your elbows raised, which introduces both unsteadiness and fatigue.
Taking that idea a step further, I devised a very simple apparatus that I call the Bino Body Mount, which solves the problem of having to raise your arms by adding a 90 degree handle to each side of a basic wood frame. You don't have to buy a mini-tripod, just a cheap 1x2 furring strip (my go-to wood for this kind of thing), a binocular tripod adapter, a 1" 1/4-20 stud knob, two star knobs, two hanger bolts, a flat washer, two fender washers, two neoprene washers, four wood screws, and two tennis balls (well, three really because they come in 3-packs). See parts and tools list at the end.The mount breaks down flat for packing by removing three knobs. It's very lightweight, and can be used standing or sitting in any type of chair. Your arms stay at your side to provide comfortable support when standing and rest on the arms of your chair when sitting. As you recline further back toward the zenith, the shoulder bars transfer more and more of the weight to your shoulders, resolving the problem of raising your arms and tiring quickly. The Bino Body Mount also improves the view and fatigue factor with any size binoculars because you don't have to hold them in front of your face with your arms raised.
For Comet C2023/A3 (Tsuchinshan-ATLAS), I sometimes used the mount standing because it was relatively low to the horizon and I really didn't need a chair. It worked great. I wouldn't recommend standing and looking anywhere near the zenith with binoculars, whether handheld, on a Bino Body Mount, or on a tripod. That's just painful and awkward.
For objects near the horizon, you can sit up and rest your arms on the chair arms.
Note: That's a Bino Bandit around the eyepieces. It's a neoprene eyepiece light shield that I highly recommend despite it's relatively high cost because it works so well.
You're not going to get rock steady views with this, but surprisingly close, and your arms and neck won't get tired. My brother and I spent many hours on our Arizona vacation using these, and they worked great with almost no fatigue. You will primarily see a jiggle from your heartbeat. You can look around anywhere in the sky that you could just handholding the binoculars. You can loosen the knobs to tilt the bino bar at whatever angle works best for you. You can adjust focus with one or both hands.
At this point, I am using the Bino Body Mount for all of my binocular astronomy observations, regardless of whether I'm traveling or not. It's simple, it's lightweight, it's compact, it's inexpensive, it's easy to build, and it works very well.
Build it
The critical measurement is the distance from the tripod threads in between the barrels of your binoculars to the end of the eyecups, what I call the "thread-to-eye" measurement. The correct distance places the binocular eyepieces exactly where they would be if you were handholding them. This doesn't need to be super precise- within 1/2 or 1/4" is fine. You can tilt the bino bar when observing to make up for any slight error.The pieces disassembled for packing in a suitcase. This mount has longer shoulder bars with two sets of holes to accomodate both my porro and roof prism binoculars. No tools required to assemble and disassemble. Just unscrew three knobs.
- Always carry the apparatus by holding the binoculars. That way, if you forgot to tighten something or it got loose, it's the mount that will hit something, not your binoculars.
- Apropos the above, periodically check that the three knobs are tight.
- Some tilting of the binoculars from side to side on the tripod adapter is desirable so that if you are looking off to the side a bit it will stay lined up better with your eyes.
- When observing near the horizon while sitting, I like to rest my palms on the side knobs with my fingers curled around the ends of the handle bars, tucking my elbows in for support
Parts list
1x2 furring strip (6 ft.)
Binocular tripod adapter (example)
1" 1/4-20 stud knob (most come in multi-packs- good for lots of projects)
Two 1/4-20 2" diameter threaded five-star knobs
Three 1/4" hole flat washers
Four 1-1/4" wood screws
Two tennis balls
Tools:
Tape measure or ruler
Power drill with 1/4" and 11/64" (or close) drill bits, and phillips head bit (or screwdriver, or both)
Hand or power saw
Two 1/4" hex nuts and two 7/16" combination wrenches or pliers (to screw in the hanger bolts)
Sturdy pointed knife to make holes/cuts in tennis balls
Sandpaper, tack cloth, paint, and paintbrush
Nice to have but not essential:
Mitre box (to make straight cuts)
Clamps (to hold the wood for sawing and drilling)
Saturday, October 19, 2024
Add an azimuth circle to a your Dobsonian and ditch that straight-through finder
The main advantages are:
- No neck strain looking through a straight-through finderscope or red-dot finder (this was the impetus for me)
- Ability to find objects in areas of sky without a lot of bright stars for starhopping, or in light pollution
- Quick and easily repeatable
- No finicky and power-hungry electronics (the angle gauge takes two AA batteries that last a long time)
- Inexpensive
What you need and how you use it
- Set the telescope base so that the azimuth circle is roughly aligned with either the Sun or Moon during daylight, or any bright object at night.
- Level the scope. A cheap bubble level will do fine. I use an app. I made some plywood squares with tread tape on them for rough leveling and use composite shims for fine tuning.
- Put in a low power eyepiece and find a bright object that's easy to align on without a finderscope. Just sight along the tube at something not too high in the sky. Once centered in the eyepiece, adjust your RACI finderscope, if you have one, to match.
- Look up the alt-az coordinates of the object in Sky Safari or your preferred app. The altitude should match your digital angle gauge plus or minus the accuracy of the gauge. Make sure your gauge is sitting evenly on the top of the scope tube.
- Adjust the azimuth pointer to match the azimuth shown in the app. Don't wait too long, as this will be constantly changing.
- Look in the eyepiece and you should see the object, or at least the star field around or near the object. Identify the exact location within the field by comparing your view with the star chart.
- To move to another object, look up the new object's coordinates and move the scope until they show on the gauge and circle. You may have to adjust the azimuth pointer slightly for inherent inaccuracies if you are in a different part of the sky, but you will be close.
Get a digital angle gauge
Making and installing an azimuth circle
- Black print on white background
- Tick lines (default)
- Primary increments 10 degrees (default)
- Number orientation = Radial -90 (so you can read the numbers correctly at the eyepiece)
- Outer marks - note that if you choose Outer marks, the diameter you chose becomes the inner diameter, so you need to adjust the size so the outer diameter is the diameter you need (e.g., your ground board is 22 inches, and so you need a 22 inch outer diameter circle, or a tiny bit smaller). Font size, tick thickness, etc. will affect this, so check the info in the center of the circle on the Blocklayer page and adjust everything with the sliders until you have it the way you want it and your outer diameter is the correct size.
The Sky Watcher Virtuoso GTi 150P with new azimuth circle and larger table. The digital angle gauge sits on the top front of the metal lower half of the tube.
Sunday, September 1, 2024
Mounting a RACI finderscope on a collapsible tabletop telescope
I recently bought a Sky-Watcher Virtuoso GTi 150P tabletop 150mm (6-inch) telescope. This is a slightly larger variation, with a go-to mount, of a popular design sold by Astronomers Without Borders as the OneSky, a 130mm (5-inch) altitude-azimuth mounted collapsible tabletop telescope, shown at left.
These telescopes have a Vixen-style dovetail bar attached to the solid part of the tube—the green thing in the pictures of my telescope below. This is how the tube attaches to the mount, which has a Dobsonian style groundboard for the azimuth (side to side) axis and a half-fork with dovetail saddle for the altitude (up and down) axis. The tube can be removed from the saddle and clamped back on with a single threaded knob, the knob sticking up from the blue tube in the picture of the OneSky, making this portable design even more portable.
The problem
For finding objects, or in the case of the go-to model, aligning the mount or finding objects when the go-to isn't cutting it, the scopes are equipped with a straight-through red dot finder that projects a red dot on a window in front of the stars. A clever design with many variations, but like some people, I have trouble—no, make that pain—bending my neck enough to comfortably look through one, especially at objects high in the sky.
On my other two scopes I have added azimuth circles and a digital angle gauge to find objects by looking up their alt-az coordinates in an app like Sky Safari Pro, moving the scope so that the coordinates are set on the azimuth circle and the gauge, and then using a right angle correct image (RACI) finderscope to zero in on the target. A RACI finder doesn’t require neck contortions and shows a correctly oriented view like you would see in binoculars.
I wanted to add a RACI finder to the Sky-Watcher tabletop telescope, but the problem is that the front ring that holds the secondary mirror and focuser is extended out on two truss tubes so that the whole front half can collapse into the solid rear half that holds the primary mirror, making it quite compact. There is no good place to add a finder on the front ring and it would make the scope quite front-heavy, requiring some sort of counterweight for manual operation. Others have added reinforcement to the front plastic ring or have drilled holes in the tube to add a finderscope, but I didn’t want to do either of these things.
The solution
I added a universal dovetail shoe (base) to a block of wood attached to the scope's dovetail bar (the green thing) and swap my RACI finder between my 4.5-inch and this telescope. Looking at the design, the long dovetail bar attached to the telescope tube has two channels that run its length and a single 1/4-20 threaded hole close to the front end of the bar. The hole is presumably for mounting on a tripod, but it’s at a very poor location for balance. I had seen others mount a laser pointer and finder on that part of the dovetail bar, so I experimented with mounting a Svbony SV182 6x30 RACI finder that I have on my 4.5-inch reflector. I zip tied it in place to see how it worked. The problem was that, sticking out straight from the dovetail bar, the finder was too far from the observer’s position and I had to get up and either lean over or walk around the back of the scope to the other side to use it.If I were to fasten a block of wood to the end of the dovetail bar at a 90 degree angle, then I could mount the RACI finder on the end of it, bringing the eyepiece to a much better position, even better than if I had drilled a couple of holes in the solid tube to mount it. After doing just that, I noted a post on the OneSky megathread on Cloudy Nights that did something similar, but by drilling and tapping a dovetail clamp instead of using a block of wood. Same end result.
10-19-2024 Update: I wasn't happy with how far I had to scrunch down to look through the finder at or near the zenith, so I added an 8-1/2" extension bar made out of a piece of 1x2 furring strip where the dovetail shoe was and put the dovetail shoe on the end of the new bar, moving the finderscope forward and closer to the eyepiece. Wood screws all around. Shifts the balance slightly, but I just move the scope down the dovetail bar a small amount to compensate.
Here’s how to do it
[Note: See 10-19-204 updates below for an improved version that puts the finder closer to the eyepiece.] I cut all the pieces using a basic mitre box and a hand saw.
I cut a 5” piece of 2x2 baluster (vertical railing piece) that I had left over from making the legs for the telescope’s table mount. I cut a 45 degree corner on one end so I wouldn’t have a sharp corner sticking out. These balusters tend to vary slightly in cross section width, so I checked a few pieces before I found one where the dovetail finder shoe, or base, fits tightly in one direction—one more way to make it even more solid. Note: I used balusters rather than the 8’ lengths of 2x2 that they have because the balusters tend not to be as warped as the long pieces and they were actually cheaper per foot.I glued and screwed two small pieces of wood to the block to sit in the bar channels and keep the block from rotating on the single bolt. I cut the two little pieces from a large size paint stirring stick (1/4” thick). The pieces are 7/16” wide and 2-1/4” long. I sanded them so they fit tightly into the bar channels.
I dry fit the block and the two channel pieces to make sure they fit tightly in the dovetail bar. There are two screws in the dovetail bar at the bottom of each channel 1/8” from the front end of the bar. The block would need to sit behind these screws with the channel pieces butting up against them to add stability. I marked where the bolt would go through the block into the dovetail bar and also where I would need to glue the small channel pieces that would fit snugly into the two channels in the bar. I had cut them a little long just to give a bit more twist resistance in the channel.
Where the bolt would go through the block and screw into the dovetail bar, I countersank a 3/4” diameter hole about 3/16” deep, enough so the bolt head, with a 5/8” outer diameter - 1/4” inner diameter washer, would be flush or nearly flush with the surface, using a 3/4” Forstner bit. (3/4” because my wrench socket would fit in it so I could tighten the bolt.) You must do this before drilling the hole for the bolt so that the bit can center properly. It’s not essential to countersink the bolt head, but I thought it would be better than having it sticking out, and I recently got the Forstner bit set, so I’m eager to find reasons to use it! I then drilled a 1/4” hole all the way through the block, centered in the 3/4” countersunk hole.
I inserted the two little channel pieces into the channels and pushed them tight up against the screws in the bar channels. I inserted the bolt and tightened it to make sure the fit was good. Then I removed the bolt, put wood glue on the two channel pieces where they would join the block and bolted the block into place. Once the glue had dried for about 45 minutes, I removed the assembly and cleaned off some glue that got on the dovetail bar. It removes easily.
The dovetail shoe for the finder has four slots for screws. I screwed it into the top of the block with four 1-1/4” #6 wood screws. Everything looked good, so I took the shoe off the block assembly, painted the block assembly black, reattached the shoe, and attached the whole assembly to the dovetail bar. The shoe stays on the bar and the finderscope is removed for transport. This modification is also entirely reversible with no alteration to the telescope. [Note: With the updated extension, you'll screw the extension bar in here and screw the dovetail shoe to the forward end of the extension bar.]
Saturday, August 24, 2024
Recording your observations
![]() |
Jupiter-Venus conjunction, March 2023 |
July 3, 1990 (Miami, Florida)Picked out major stars: Vega, Altair, Deneb, Arcturus, Spica, and Antares (near Moon). Found the “Teapot” and figured that was Saturn to the left (west) of it. Mosquitoes were fierce and it’s only July! Looked for M19- too washed out to spot it. Also M4. Traced out some of the constellations. Moon is gibbous—some good crater action on the “tan line”.
That was the first observation I ever recorded. I didn't even have celestial east and west sorted out yet. Not that I hadn't observed the sky with a variety of telescopes, binoculars, or the unaided eye before that. But this was my first year of "getting serious" with amateur astronomy.
But how serious are you about Sirius?
It's what you make it. It's a hobby. For some people it's a passion. But it's still a hobby. Most of your observations matter only to you, so consider that, when and if you record them. I do strongly suggest you keep some kind of observing log, for the following reasons:
- It will jog your memory to bring back specific nights and events
- You can compare observations made at different times, in different skies, through different instruments
- It's interesting to see your progress in the hobby, and your failures
- It will tell you if you've observed something before or if it's new to you
- You'll remember people (and critters) you would otherwise have forgotten
That's just a few, and it really varies depending upon the person.
I can only tell you how I log my observations. I don't always log details, especially for objects I've seen many times, unless I see something new in them. I like to keep it conversational and not too technical. I like to have fun. I don't like to be bothered recording the seeing, transparency, exact eyepieces and powers I was using, data from a sky quality meter, etc. for every observation. I'll note the sky conditions at the beginning of a session and if they change, as they often do. I keep it simple- who, what, where, and when. I already know the why. See my post on the Comet Shoemaker-Levy 9 impacts on Jupiter log entries to get an idea of what I put in there and how a log makes a great memento of a memorable observing session or event.
Two bins
My observing records end up in two bins: an observing log in narrative form, which includes notes taken while at the eyepiece that I then extract from the log and group together by object over time in a separate collection of notes files.
My actual observing log, as in the example above and at left, is a session by session narrative. I keep it in a series of Microsoft Word compatible documents, usually one document per year or half year, depending on how much observing I've done, and I'll add images from the internet for many of the objects.I note the situation, the people, animal sounds, big gusts of wind, spectacular lightning on the horizon—all those things that bring back the memory like it was yesterday. I'll also make notes at the eyepiece about specific objects. At the beginning of each session, I note the date, day of the week, location, and what equipment I'm observing with.
Veil Nebula (western portion), NGC 6960Oct. 13-14, 1993, Chiefland Star Fest, Chiefland, FL(4.5-inch) Quite bright- tried for dimmer side near the bright star in my scope- only a hint of its brightest part in 100x. Low power would be better if I had it.Nov. 13-14, 1993, Lake Kissimmee State Park Star Party, FL(10-inch) Nice view of the fainter section in the 10-inch SCT. Very bright with the nebula filter. Seems like there's a dark lane down the center of the nebulosity (this is the W section). E end visible with the filter.Sep. 24-25, 2003, Skyline Drive, Shenandoah National Park(4.5-inch) It's just such a nice transparent night I had to go for the Veil Nebula, and sure enough, it's pretty easy to see around 52 Cygni on both sides, not just the one brighter side, and I can see more than I usually can in those areas. I can see the other segment on the opposite side (NGC 6992) in the finderscope! It shows up nicely in 50x. I gotta say that's about as well as I've seen the Veil show up in this scope. I can trace the whole crescent shape of 6992 for at least 2 fields of view in 50x (almost 2 degrees).