Friday, December 13, 2024
Build an air travel table mount for a tabletop dobsonian
Saturday, October 26, 2024
Upgrading from starter eyepieces
My recommendation is to get an inexpensive zoom eyepiece to go with your new telescope. There are quite a few under $100 that are available. Even though I have a nice Baader Hyperion 8-24x zoom, this year I purchased a Svbony SV135 7-21mm zoom. It's a lot lighter, about six times cheaper, and a decent performer, getting mostly good reviews on Cloudy Nights for its price, and I agree. I got one for my brother, too, and he loves it. [Note: If you wear glasses or want a slightly wider view, you might want to go with the Svbony SV191 7.2-21.6mm zoom, which is a bit more expensive and not quite as sharp.]
With a zoom, you will get a feel for how different objects in the sky look in various eyepiece focal lengths, which determine the power, and what works best in your telescope. (Telescope focal length ÷ eyepiece focal length = power. For example, a telescope with a 750mm focal length with a 10mm eyepiece in it will give you 75x.) If you do eventually upgrade your eyepieces, after you get to know the sky better and know what you like to look at, you can keep the zoom and use it when you want to travel light, for quick sessions, planetary and lunar detail, double stars, and for outreach. That's what I do.Zoom eyepieces like the SV135 have a narrower field of view than many comparably priced eyepieces and generally aren't quite as sharp or well corrected for aberrations, although this one does tolerably well. By twisting the barrel, you are able to zoom into exactly the desired power, replacing a large set of eyepieces with just one.
As you progress, you might want wider or sharper views, which come at a cost. Televue eyepieces, the premier example of consistently high end eyepieces, are expensive because they give you well-corrected wide views, which don't come cheap. But a relatively cheap zoom allows you to experiment with different powers on different objects so you can find what works best in your telescope for you. Then you have a better idea of what you want if you decide to upgrade. This also allows you to take full advantage of your new telescope immediately.
Well, maybe not immediately. More critical than upgrading eyepieces is learning the sky and how to find things in it with your telescope. See the Space Walk Among the Stars sound guides, which will help you find some wonderful deep space objects, as well as posts on determining directions in your telescope, how to set up your telescope for starhopping, the Astrohopper app, and others.The internet is full of observing guides. I would start by visiting the Sky & Telescope site, with their Interactive Sky Chart and lots of information for beginners. You'll find tons of information there. Also visit Cloudy Nights, the premier amateur astronomy forum. The Beginners Forum will keep you occupied for many cloudy nights to come and provide a place to ask questions.
Left: Screenshot from Sky Safari Pro. Apps like this help you locate objects in the night sky and can even control your telescope if it is go-to equipped.
Saturday, October 19, 2024
Add an azimuth circle to a your Dobsonian and ditch that straight-through finder
The main advantages are:
- No neck strain looking through a straight-through finderscope or red-dot finder (this was the impetus for me)
- Ability to find objects in areas of sky without a lot of bright stars for starhopping, or in light pollution
- Quick and easily repeatable
- No finicky and power-hungry electronics (the angle gauge takes two AA batteries that last a long time)
- Inexpensive
What you need and how you use it
- Set the telescope base so that the azimuth circle is roughly aligned with either the Sun or Moon during daylight, or any bright object at night.
- Level the scope. A cheap bubble level will do fine. I use an app. I made some plywood squares with tread tape on them for rough leveling and use composite shims for fine tuning.
- Put in a low power eyepiece and find a bright object that's easy to align on without a finderscope. Just sight along the tube at something not too high in the sky. Once centered in the eyepiece, adjust your RACI finderscope, if you have one, to match.
- Look up the alt-az coordinates of the object in Sky Safari or your preferred app. The altitude should match your digital angle gauge plus or minus the accuracy of the gauge. Make sure your gauge is sitting evenly on the top of the scope tube.
- Adjust the azimuth pointer to match the azimuth shown in the app. Don't wait too long, as this will be constantly changing.
- Look in the eyepiece and you should see the object, or at least the star field around or near the object. Identify the exact location within the field by comparing your view with the star chart.
- To move to another object, look up the new object's coordinates and move the scope until they show on the gauge and circle. You may have to adjust the azimuth pointer slightly for inherent inaccuracies if you are in a different part of the sky, but you will be close.
Get a digital angle gauge
Making and installing an azimuth circle
- Black print on white background
- Tick lines (default)
- Primary increments 10 degrees (default)
- Number orientation = Radial -90 (so you can read the numbers correctly at the eyepiece)
- Outer marks - note that if you choose Outer marks, the diameter you chose becomes the inner diameter, so you need to adjust the size so the outer diameter is the diameter you need (e.g., your ground board is 22 inches, and so you need a 22 inch outer diameter circle, or a tiny bit smaller). Font size, tick thickness, etc. will affect this, so check the info in the center of the circle on the Blocklayer page and adjust everything with the sliders until you have it the way you want it and your outer diameter is the correct size.
The Sky Watcher Virtuoso GTi 150P with new azimuth circle and larger table. The digital angle gauge sits on the top front of the metal lower half of the tube.
Sunday, September 1, 2024
Mounting a RACI finderscope on a collapsible tabletop telescope
I recently bought a Sky-Watcher Virtuoso GTi 150P tabletop 150mm (6-inch) telescope. This is a slightly larger variation, with a go-to mount, of a popular design sold by Astronomers Without Borders as the OneSky, a 130mm (5-inch) altitude-azimuth mounted collapsible tabletop telescope, shown at left.
These telescopes have a Vixen-style dovetail bar attached to the solid part of the tube—the green thing in the pictures of my telescope below. This is how the tube attaches to the mount, which has a Dobsonian style groundboard for the azimuth (side to side) axis and a half-fork with dovetail saddle for the altitude (up and down) axis. The tube can be removed from the saddle and clamped back on with a single threaded knob, the knob sticking up from the blue tube in the picture of the OneSky, making this portable design even more portable.
The problem
For finding objects, or in the case of the go-to model, aligning the mount or finding objects when the go-to isn't cutting it, the scopes are equipped with a straight-through red dot finder that projects a red dot on a window in front of the stars. A clever design with many variations, but like some people, I have trouble—no, make that pain—bending my neck enough to comfortably look through one, especially at objects high in the sky.
On my other two scopes I have added azimuth circles and a digital angle gauge to find objects by looking up their alt-az coordinates in an app like Sky Safari Pro, moving the scope so that the coordinates are set on the azimuth circle and the gauge, and then using a right angle correct image (RACI) finderscope to zero in on the target. A RACI finder doesn’t require neck contortions and shows a correctly oriented view like you would see in binoculars.
I wanted to add a RACI finder to the Sky-Watcher tabletop telescope, but the problem is that the front ring that holds the secondary mirror and focuser is extended out on two truss tubes so that the whole front half can collapse into the solid rear half that holds the primary mirror, making it quite compact. There is no good place to add a finder on the front ring and it would make the scope quite front-heavy, requiring some sort of counterweight for manual operation. Others have added reinforcement to the front plastic ring or have drilled holes in the tube to add a finderscope, but I didn’t want to do either of these things.
The solution
I added a universal dovetail shoe (base) to a block of wood attached to the scope's dovetail bar (the green thing) and swap my RACI finder between my 4.5-inch and this telescope. Looking at the design, the long dovetail bar attached to the telescope tube has two channels that run its length and a single 1/4-20 threaded hole close to the front end of the bar. The hole is presumably for mounting on a tripod, but it’s at a very poor location for balance. I had seen others mount a laser pointer and finder on that part of the dovetail bar, so I experimented with mounting a Svbony SV182 6x30 RACI finder that I have on my 4.5-inch reflector. I zip tied it in place to see how it worked. The problem was that, sticking out straight from the dovetail bar, the finder was too far from the observer’s position and I had to get up and either lean over or walk around the back of the scope to the other side to use it.If I were to fasten a block of wood to the end of the dovetail bar at a 90 degree angle, then I could mount the RACI finder on the end of it, bringing the eyepiece to a much better position, even better than if I had drilled a couple of holes in the solid tube to mount it. After doing just that, I noted a post on the OneSky megathread on Cloudy Nights that did something similar, but by drilling and tapping a dovetail clamp instead of using a block of wood. Same end result.
10-19-2024 Update: I wasn't happy with how far I had to scrunch down to look through the finder at or near the zenith, so I added an 8-1/2" extension bar made out of a piece of 1x2 furring strip where the dovetail shoe was and put the dovetail shoe on the end of the new bar, moving the finderscope forward and closer to the eyepiece. Wood screws all around. Shifts the balance slightly, but I just move the scope down the dovetail bar a small amount to compensate.
Here’s how to do it
[Note: See 10-19-204 updates below for an improved version that puts the finder closer to the eyepiece.] I cut all the pieces using a basic mitre box and a hand saw.
I cut a 5” piece of 2x2 baluster (vertical railing piece) that I had left over from making the legs for the telescope’s table mount. I cut a 45 degree corner on one end so I wouldn’t have a sharp corner sticking out. These balusters tend to vary slightly in cross section width, so I checked a few pieces before I found one where the dovetail finder shoe, or base, fits tightly in one direction—one more way to make it even more solid. Note: I used balusters rather than the 8’ lengths of 2x2 that they have because the balusters tend not to be as warped as the long pieces and they were actually cheaper per foot.I glued and screwed two small pieces of wood to the block to sit in the bar channels and keep the block from rotating on the single bolt. I cut the two little pieces from a large size paint stirring stick (1/4” thick). The pieces are 7/16” wide and 2-1/4” long. I sanded them so they fit tightly into the bar channels.
I dry fit the block and the two channel pieces to make sure they fit tightly in the dovetail bar. There are two screws in the dovetail bar at the bottom of each channel 1/8” from the front end of the bar. The block would need to sit behind these screws with the channel pieces butting up against them to add stability. I marked where the bolt would go through the block into the dovetail bar and also where I would need to glue the small channel pieces that would fit snugly into the two channels in the bar. I had cut them a little long just to give a bit more twist resistance in the channel.
Where the bolt would go through the block and screw into the dovetail bar, I countersank a 3/4” diameter hole about 3/16” deep, enough so the bolt head, with a 5/8” outer diameter - 1/4” inner diameter washer, would be flush or nearly flush with the surface, using a 3/4” Forstner bit. (3/4” because my wrench socket would fit in it so I could tighten the bolt.) You must do this before drilling the hole for the bolt so that the bit can center properly. It’s not essential to countersink the bolt head, but I thought it would be better than having it sticking out, and I recently got the Forstner bit set, so I’m eager to find reasons to use it! I then drilled a 1/4” hole all the way through the block, centered in the 3/4” countersunk hole.
I inserted the two little channel pieces into the channels and pushed them tight up against the screws in the bar channels. I inserted the bolt and tightened it to make sure the fit was good. Then I removed the bolt, put wood glue on the two channel pieces where they would join the block and bolted the block into place. Once the glue had dried for about 45 minutes, I removed the assembly and cleaned off some glue that got on the dovetail bar. It removes easily.
The dovetail shoe for the finder has four slots for screws. I screwed it into the top of the block with four 1-1/4” #6 wood screws. Everything looked good, so I took the shoe off the block assembly, painted the block assembly black, reattached the shoe, and attached the whole assembly to the dovetail bar. The shoe stays on the bar and the finderscope is removed for transport. This modification is also entirely reversible with no alteration to the telescope. [Note: With the updated extension, you'll screw the extension bar in here and screw the dovetail shoe to the forward end of the extension bar.]
Thursday, August 15, 2024
Why does finding things easily have to be so hard?
Well, so far I'm not impressed with the Dark Side. Like most tech gear, I have a love-hate relationship with it. I love it when it works. When it doesn't, which seems more and more of the time now, I hate it. I can't count the number of times just in the few weeks that I've had it that I wished I could just push the scope where I want it to go, like a manual dob. That always works. Always.
So what are the issues? For one thing, you need two suitable stars to do the initial alignment. These are selectable from a list. In a partly to mostly cloudy sky, which is common around here, two suitable stars may not both be visible at the same time. Understandably a limitation of the sky conditions. But if they are visible, the scope may slew many degrees away from the target star, so you need to choose only the brightest stars that are easiest to navigate to manually and recognize in the eyepiece as the correct star.
Then there's the accuracy. Maybe because it's a cheaper mount (the scope retails for $470 and I paid even less on sale), but an initial alignment almost never lasts the whole observing session, which for me is usually between two and four hours. Sometimes, despite leveling, centering the alignment stars, and doing all the required tasks, the first object I punch in after alignment is still several degrees off. Occasionally it's right in the middle, but most of the time it's either on the edge if I'm lucky or somewhat outside a low power (30x) field of view. When it's several degrees off, I can starhop my way over to it with the help of the Sky Safari chart. Again, somewhat of a limitation of the technology.
Then there are the random take-offs. I'll have an object in view and then as I am watching, with the phone on the table, the scope suddenly decides it wants to look at something else and slews on its own. Hmm.
How about connection drop outs? This scope has WiFi, to which the Synscan app connects so you can control it with your phone. Synscan is very rudimentary in its interface for selecting objects (and the font for that function is inexplicably small). So I tried using Sky Safari to select and go-to the objects I want to look at. At first things were great, except that Synscan would drop the connection every 15 minutes unless it was in the foreground. Despite ensuring the Android settings would prevent this, it still did it. I could live with that.But then either Synscan or Sky Safari must have done an update (à la CrowdStrike), and Sky Safari would no longer connect: the Gray Screen of Death (GSOD) in the screenshot. So I used the apps separately, selecting an object in Sky Safari and pointing to it with Synscan, then going back and forth between apps to actually get it in the field. This is supposed to be the easy way of finding stuff? I later found that if I just move Synscan to the foreground and then back to Sky Safari, the latter will reconnect. But...really?
Lastly, I find that having to look down and press buttons on a cell phone when I'm observing is distracting and clunky. It also doesn't help with maintaining night vision, despite a "night mode" in the app, which is not well implemented. You can slew at different speeds, but it's aggravating to keep overshooting over and over. [1/9/25 update: I picked up a cheap bluetooth mini game controller and it works great. In the cold, I can even keep my hand in my pocket and control the scope. One problem solved.] I tried the "tilt to slew" feature in Sky Safari, whereby you tilt your phone a little one way or the other and the scope slews in response. That is even more masochistic, no matter how slow I set it. Sometimes I give up, loosen the clamps on the axes, and just move it by hand. Always works. But that kind of defeats the purpose of go-to, doesn't it?Well, by now you either think I'm a total crank, or maybe that go-to is not everything it's cracked up to be. In fact, I have come to the realization that both are true.
I am now experimenting with using the free progressive web app Astrohopper as my "push-to" way of finding things (see my initial review on Astrohopper here). It works well for that purpose and is more reliable than the go-to. I can still use the tracking once I find an object, and that's my main reason for getting the go-to version over the non-go-to. I can't use straight-through finders anymore due to physical limitations, otherwise I'd still be starhopping, which is the simplest, most reliable, and most rewarding way to navigate with a telescope.
By the way, the scope itself is great. It's the tech part that could use some refining, to say the least. The Synscan Pro app gets a 2.2 star rating on Google Play. The non-pro version only gets 1.7 stars. I may end up staying with Astrohopper as my finding tool, then turn on the tracking. That works. [9/21/2024 Update: I got fed up with the go-to, and Astrohopper seems to not be able to geolocate after browser updates, so I added an azimuth circle to the scope base and use that and my digital angle gauge to navigate now. I only use the tracking, and that is often out of whack, but it's nice when it works. Maybe I'll write up how I did the azimuth circle in a future post.]
Friday, July 19, 2024
Make a table for a tabletop telescope
If you or your child are just getting started in visual astronomy, I can recommend a tabletop telescope of 4.5" to 6", such as the Sky-Watcher Heritage 150 Tabletop Dobsonian. This telescope (reviewed here) has good quality optics, is compact and portable, and very comfortable to observe with. But it's missing a table.
Why make one
You would think that a tabletop telescope is designed so that you can use whatever table you may have handy: a picnic table, a foldup table, a stool, or just a small end table. That may have been the intention, or maybe just the marketing, but when you’re looking at objects in powers of 30x, 50x, 100x, or 200x, you need something very stable so the view isn’t all shaky.
Picnic table? Nope. When you sit on it, you’re going to make it shake. It is also unlikely to be in the best spot for observing and you can’t move around the telescope.
Foldup table? Nope. Really shaky unless you get one that’s built like a tank, and that defeats the portability factor that is often the main advantage of the table.
Stool? Maybe, if it’s solid and the right height. You could cut the legs to size, but will it be large enough to fit the telescope? It may also be bulky if you have to transport your telescope to a remote location.
End table? Three legs will be better for leveling on uneven ground, and you have the same problems listed above as a stool.
Well, that’s a bummer. You thought a tabletop scope would be just the thing for portability. Now you’ve got one and no good table to put it on.
Fear not. Some people use a milk crate, build a simple tripod, or buy something at Ikea like this stool.
Or...and you knew this was coming...you could have fun and build your own observing table. It’s not hard (if I can do it!), and you can customize it for your own observing needs. Continue reading to achieve tabletop nirvana.
How to do it
The table I built for my Sky-Watcher Virtuoso GTi 150P, a 6-inch collapsible tabletop telescope, is simply a round piece of 1/2” plywood with holes drilled in it to hold eyepieces and three legs made out of cheap 2x2 lumber that can be unscrewed so the table top lies flat for transport. The legs are cut with about a 10 degree angle so they provide a little more stability than straight legs, although you could make them straight to simplify things even further. Each leg has a 1/4-20 hanger bolt screwed into one end which allows it to be screwed into a t-nut fastened in the tabletop. Easy-peasy, and it takes up very little room in the car if you unscrew the legs.
The base of my scope is about 14" in diameter. I decided on an 18” diameter circle so I would have a couple inches around the outside to drill holes for eyepieces and to put my cell phones and filters down. I used 1/2” plywood to keep the table as light as possible. With the scope feet directly over the table legs, it only needs to be stiff enough to keep the legs in place without bearing the weight of the scope. [9/22/2024 Update: Because the go-to on my scope is unreliable, I added an azimuth circle to the base of the telescope. The circle sticks out about 3/4" all around, so I built a new table, this time using 3/4" plywood and making it 20" in diameter. I like it better, and I recommend you go with those dimensions. It's a little heavier, but not by much. It also makes a great camping side table when you're not observing.]
My mistake in cutting the plywood circle with the jig and jigsaw was I trusted in a YouTube video that showed how easy and neat it was to use a cutting jig. In reality, the saw blade wants to either go inside or outside the circle unless you watch very closely. I had the saw run outside the circle on one part and inside on another, breaking two blades.
Were I to do it again, I would only cut a couple inches at a time and check to make sure it was still cutting on the circle. Or I would just draw the circle on the wood and cut it freehand with the jigsaw. I’ve done that before and it comes out fine. I just might not do it if I need the precision necessary for an altitude bearing, for example, but for this purpose it’s fine.
Once I had a pseudo-circle cut out, I marked where the three feet of the telescope would go. You can simply place the telescope base in the center and mark where the legs go. To be more precise, you can divide the circle into three sections by drawing a diameter (1), then drawing lines (2 and 3) the length of the radius (9” in this case) from the outer point of the first line (1) to where it intersects the outer edge of the circle on both sides, then drawing the other two lines (4 and 5), as in the diagram.
To make sure I had the scope centered, I partially screwed a wood screw into the top of the circle in the center. Some of these tabletop telescopes have a threaded hole in the center of the base. I just placed that over the screw and marked where the three feet would go.
To screw in the table legs you can get angled leg brackets, but I don't like the inserts they use and I wanted a nice flush surface so I could slide the tabletop in between stuff in the car easily. So I put three 1/4-20 t-nuts where the feet would sit. These need to go in from the top of the table so that when you screw in the legs from the bottom, they will be pulled in tighter, rather than pulled out of the wood. Make sure the t-nut barrel is long enough to grab at least a few threads of the hanger bolts in the legs but doesn’t stick out the bottom if it is inset about 1/8” (see below). You want the legs to contact the table when screwed in tightly to give a nice stable grip.
I used a 3/4” Forstner bit in my cordless drill to first inset the holes about 1/8” in the top of the table where the t-nuts would go. I didn’t want to go too deep in 1/2” plywood, but if you use thicker plywood you can go deeper. You just want them inset to give some edge for the telescope feet to catch on so it won’t slide easily.
Then I drilled a hole in the center of each inset with a 9/32” regular drill bit. If you don’t have that size, use a bit that’s just slightly larger than 1/4” because the threaded barrel of the t-nut will be a little larger than 1/4”. Hammer in the t-nuts from the top side until they sit below the surface of the table.
I wanted some eyepiece holders, so I marked off three holes along the outer edge of the table top in each of the three sectors. Test the fit by placing the telescope on the table and your eyepieces where the holes will be. Make sure the telescope clears the eyepieces through its full rotation of 360 degrees. When satisfied it would, I drilled holes with a 1-1/4" hole saw. I also added a 2" hole to each sector, even though my telescope doesn't have a 2" focuser. I figured I might want to use the table for stuff while using my 10-inch, and I have a couple of 2" eyepieces. It would also lessen the weight further. [8/28/24 update: I may redo the top without the 2" holes. Twice now I've almost dropped an eyepiece through the 2" hole onto the driveway, thinking it was the 1.25" hole. Oops.]
I sanded both sides and the edge of the table top with a random orbital sander and the holes manually with small pieces of sandpaper and a scrap piece of PVC pipe.
As noted above, you can just make the legs straight at whatever height you prefer if you don't want to take the extra steps to angle the legs, although you will sacrifice a little stability. 2x2 lumber is cheap and you can make several sets if you like. I like to use balusters, which are the vertical pieces in a deck railing, because they tend to be straighter than the 8’ lengths of 2x2. Those can be horribly warped and actually cost more per linear foot at my local store.
To make straight legs, drill a hole in the center of one end, as straight as possible, a little deeper than the length of the wood screw part of a 2" 1/4-20 hanger bolt. Use a drill bit a little smaller than 1/4” so the screw will have plenty of wood to bite and hold tight. Screw it in by threading two 1/4-20 nuts and tightening the upper nut with a 7/16” wrench until you get the length sticking out that will work with your t-nuts, roughly 3/8 to 1/2 inch. You can unscrew it if you overdid it by putting the wrench on the lower nut and twisting counterclockwise.
To make angled legs, which will add stability to the whole setup, I found an easy way is to take a typical mitre box and lay the uncut piece of 2x2 diagonally so that one side is up against the top of the box as seen from above and the other against the bottom. Clamp it down. If you cut along the 90 degree slot in the middle you’ll get about a 10 degree angled end. For the first and the last cut, you’ll have to estimate and just clamp the wood down.
Now put each leg in a vise if you have one, so that the angled face is horizontal. Then just drill your hole in the center vertically. Screw in the hanger bolts as described above using two 1/4-20 nuts and a 7/16” wrench. When you screw the leg into the table, the other end will trace a small circle, but it will work.
Lastly, I put a piece of white duct tape on the table top at each point where the legs go to assist setting the scope on the table so the feet are directly over the t-nuts.
That’s it. If you mess up, all the parts are cheap and you can redo any or all of it. You can also make legs of different lengths if needed.
My Sky-Watcher Virtuoso GTi 150P tabletop telescope (same as the recommended scope at the beginning of this article but with an electronic mount) on the table I built for it. It looks happy, doesn't it?Materials:
Piece of Plywood 1/2" to 3/4" thick big enough to cut a suitable sized circle (18" is usually good) or precut wood circle
One or two 2x2" stair balusters
Three 1/4-20 t-nuts, short enough not to stick out from the plywood, depending on the thickness
Three 2" x 1/4-20 hanger bolts
Two 1/4-20 hex nuts
Paint or varnish
Tools:
Power drill with 9/32" (for t-nut holes), 1/8" or 3/16" bit (for hanger bolt holes), 3/4" Forstner bit, 1-1/4" hole saw
Jigsaw (unless you are buying a precut wood circle)
7/16" wrench
Sandpaper, sander (or sanding block), and dust mask (I like this one for sanding, painting, and gluing)
Two bar clamps or C clamps large enough to clamp a 2x2 in your mitre box and to the workbench surface (which could be a piece of plywood laid over two saw horses if necessary).
Bench vise
Hammer (a big, short bolt helps to hammer the t-nuts below level so you don't damage the table surface)
Carpenter's Square or L-Square
Pencil or X-acto knife (makes more precise measuring marks for cutting)